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ABSTRACT
In this paper we describe an automatic sentence boundary de-
tector, which inserts a period (sentence boundary marker) to
a word sequence output by a speech recognizer. The state-of-
the-art automatic sentence boundary detectors insert a period
at a position selected by a word tri-gram model from among
candidates (long pauses) offered by an accoustic model. In
contrast, the automatic sentence boundary detector presented
in this paper is based on a structured language model (SLM),
which regards a sentence as a word sequence with a syntactic
structure. In the experiment we applied our automatic sen-
tence boundary detector to Japanese broadcast lectures and
compared the result with an automatic sentence boundary
detector based on a word tri-gram model. The accuracy of
our detector was 95.7%, which was higher than that for the
state-of-the-art detector (95.2%). This result shows that an
SLM works better than a word tri-gram model as an auto-
matic sentence boundary detector.

1. INTRODUCTION

Currently, the state-of-the-art speech recognizers can take
dictation with a satisfactory accuracy. Now later stage of
natural language processing (NLP), such as grammatical dis-
ambiguation of the dictation results, are coming into focus.
Since most of these NLP systems take a sentence as an input
unit, speech recognizers should insert a sentence boundary
mark (period) automatically. In state-of-the-art speech rec-
ognizers, the acoustic model (AM) offers the positions of
long pauses as candidates, and the language model (LM) se-
lects linguistically reasonable ones from among them. As
we mentioned above, most of the NLP systems depend on
sentence boundary information, so a missrecognition of a
sentence boundary is a critical, even fatal, error for these
NLPs. Therefore, sentence boundary detection accuracy is
more important than word recognition accuracy.

The LM of most speech recognizers is based on a word
tri-gram model, which regards a sentence as a simple word
sequence. The sentence boundary detection task may, how-
ever, need information about the syntactic structure of the
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on accuracy.
cently, a structured language model (SLM) [2], which
tructural information for word prediction, was pro-
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RUCTURED LANGUAGE MODEL BASED ON
ARBOREAL CONTEXT TREES

section, first we describe a structured language model
for Japanese, then the flexible history reference mech-
called arboreal context trees (ACTs), and finally, an
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Fig. 1. Word prediction from a partial parse

SLM based on ACTs.

2.1. Structured Language Model

The basic idea of an SLM [2] is that each word would be
better predicted from the words that may have a dependency
relation with the word to be predicted than from the preced-
ing (n − 1) words. Thus the probability P of a sentence
w = w1w2 · · ·wn and its parse tree T is given as follows:

P (T ) =
n∏

i=1

P (wi|ti−1)P (ti|wi, ti−1), (1)

where ti is the i-th partial parse tree sequence. The partial
parse tree depicted at the top of Figure 1 shows the status
before the 9th word is predicted. From this status, first the 9th
word w9 is predicted from the 8th partial parse tree sequence
t8 = t8,3t8,2t8,1, and then the 9th partial parse tree sequence
t9 is predicted from the 9th word w9 and the 8th partial parse
tree sequence t8 in order to get ready for the 10th word
prediction.

Since in a dependency grammar of Japanese, every de-
pendency relation is in a particular direction as shown in
Figure 1 and no two dependency relations cross each other,
the structure prediction model only has to predict the number
of the trees depending on the next word. Thus, the second
conditional probability in the right hand side of Equation (1)
is rewritten as P (li|ti−1), where l is the length (number of
elements) of the tree sequence ti. Our SLM for Japanese
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Fig. 2. An arboreal context tree (ACT).

ency grammar is defined as follows:

P (T ) =
n∏

i=1

P (wi|ti−1)P (li|wi, ti−1). (2)

cording to a psycholinguistic report on language struc-
], there must be an upper limit on li the number of the
whose modificands have not appeared yet. We set
per limit to 9, the maximum number of slots in hu-
ort-term memory [6]. With this limitation, our SLM
es a hidden Markov model.

rboreal Context Tree

oblem in Equation (2) is how to classify the condition
f the two conditional probabilities in order to predict
t word and the next structure without encountering a
arseness problem. In an English model [2] the next

is predicted from the two right-most exposed heads
ample w6 and w8 in Figure 1).
s clear, however, that in some cases some child nodes
tree ti−1,2 or ti−1,1 are useful for the next word pre-
and in other cases even the consideration of an ex-

head (root of the tree ti−1,1 or ti−1,2) causes a data-
ness problem because of the limitation of the learning
size. Therefore a more flexible mechanism for his-

assification should improve the predictive power of
M.
we mentioned above, in SLMs the history is a se-
of partial parse trees. This can be regarded as a

tree, called a history tree, by adding a virtual root



node having these partial trees under it. An arboreal context
tree is a data structure for flexible history tree classification.
Each node of an ACT is labeled with a subtree of the his-
tory tree. The label of the root is a null tree and if a node
has child nodes, their labels are the series of trees made by
expanding a leaf of the tree labeling the parent node. For
example, each child node of the root in Figure 2 is labeled
with a tree produced by adding the right most child to the
label of the root. Each node of an ACT has a probability
distribution P (x|t), where x is an alphabet and t is the label
of the node. For example, let 〈ak · · · a2a1〉a0 represent a
tree consisting of the root labeled with a0 and k child nodes
labeled with ak, · · · , a2, and a1, so the rightmost node at the
bottom of the ACT in Figure 2 has a probability distribution
of the alphabet x under the condition that the history matches
the partial parse trees 〈〈z?〉a〉〈b〉, where “?” matches with
an arbitrary alphabet. Putting it in another way, the next
word is predicted from the history having b as the head of
the rightmost partial parse tree, a as the head of the second
rightmost partial parse tree, and z as the second rightmost
child of the second rightmost partial parse tree.

2.3. An SLM with ACTs

An ACT is applied to classification of the condition parts of
both two conditional probabilities in Equation (2). Thus, an
SLM with ACTs is defined as follows:

P (T ) =
∏n

i=1P (mi|ACTm(〈ti−1〉))
×P (li|ACTs(〈ti−1mi〉)), (3)

where ACTm is an ACT for word prediction and ACTs is
an ACT for structure prediction. Note that this is a gener-
alization of the prediction from the two rightmost exposed
heads (w6 and w8) in the English model [2]. In general, an
SLM with ACTs includes SLMs with fixed history reference
mechanism as special cases.

3. SENTENCE BOUNDARY DETECTOR

In this section, first we discuss two sorts of information for
sentence boundaries: acoustic information and linguistic in-
formation. Next, we explain how a sentence boundary detec-
tor determines positions of sentence boundaries from these
sorts of information.

3.1. Acoustic Information

Normally, speakers have a tendency to put a longer pause
between two sentences than between two words. Thus, the
duration of a silence captured by an acoustic model is a clear
clue of a sentence boundary. But the pauses between sen-
tences are not always longer than the longest pause between
words. An acoustic model can only enumerate candidates
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Fig. 3. Probabilistic voting for decision.

tence boundaries. Therefore, we set a threshold to the
n of silence, and the threshold must be low enough so

e recall will be very close to 100%. In the experiment
e conducted, the threshold was set to be 300ms and
all in a set of samples was 100%.

inguistic Information

stic information can help distinguish sentence bound-
rom simple long pauses. In each language, there are
sions which have a tendency to appear at the begin-
r at the end of sentences and others which have a
cy not to appear at the beginning or end. In English,
mple, the articles do not appear at the end of gram-
l sentences. Conventional word tri-gram models are
capture these tendencies. In addition, there are also

ral characteristics especially at the end of sentences.
phrasal unit in a sentence has a certain grammatical
nship with other phrasal units and each pair of phrasal
n a sentence are connected with each other directly or
tly by grammatical relationships. Putting it another

f there are grammatically isolated units between the
ing and some position in a set sequence, this position
ot tend to be a sentence boundary. The SLMs are ca-
of capturing this characteristic, which is beyond the
tive power of word tri-gram models.

earch Algorithm

mentioned above, a language model, given candidate
ns from an acoustic model, calculates the probability
ch position is or is not a sentence boundary. The prob-
re is the timing of a decision on a candidate position.
is no clear sentential end at the very end of speech.
our sentence boundary detector each decision is made
the next candidate is given by an AM as shown in
3. At the first candidate position, the LM holds two

ilities: a sentence boundary and a simple long pause.



Table 1. An experimental result.

Sentence boundary detector accuracy
SLM with ACTs 95.68% (10803/11291)

word tri-gram model 95.16% (10745/11291)
baseline (always “No”) 85.21% ( 9621/11291)

When the second candidate position is given by the AM, the
LM executes a “probabilistic voting,” where the LM sums
up the probabilities of the nodes connected to the node la-
beled with sentence boundary (SB) at the previous candidate
position (ex. P1+P2 in Figure 3), and also sums up the prob-
abilities of the nodes connected to the node not labeled with
a sentence boundary (No) at the previous candidate position
(ex. P3 +P4), and compares these two probabilities to make
a decision on the previous candidate position. Note that a
“struct.” in Figure 3 represents ACTm(t) in Equation (3),
which is always the same in a word tri-gram model.

4. EVALUATION

We developed a sentence boundary detector based on an
SLM with ACTs and one based on an orthodox word tri-
gram model. In this section, we report the results of the
sentence boundary detection experiments and discuss them.

4.1. Conditions of the Experiments

The corpus used in our experiments is a set of transcribed
Japanese broadcast lectures from a bachelor’s degree pro-
gram. The corpus contains 2,004 sentences. Each of them is
segmented into words and annotated with its syntactic struc-
ture. Each word is annotated with a part-of-speech. Each
sentence contains marks representing pauses between words
longer than 300 ms, and some of them are marked as sentence
boundaries by linguists in our lab. The task of the sentence
boundary detectors in the experiment is to select these sen-
tence boundaries from among the long pauses. The corpus
was divided into ten parts; the parameters of the model were
estimated from nine of them and the model was tested on the
remaining one (10-fold cross validation).

4.2. Evaluation

The criterion for sentence boundary detection is the ratio
of correct decisions over all decisions to be made (pauses
longer than 300 ms):

accuracy =
#correct decisions

#long pauses
.
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ble 1 shows the accuracies of the sentence boundary
r based on SLM with ACTs, one based on a word tri-
odel, and a baseline in which all long pauses are not

ed as sentence boundaries. This result shows that the
ithACTs reduces the errors by 10.6% compared to the

f-the-art sentence boundary detector based on word
ms. Since the accuracy of the state-of-the-art method
e to 100% and sentence boundary information plays
important role in NLP following speech recognizers,
provement can be regarded as significant. In addition,
M outperforms the orthodox word tri-gram model in
sk as well as in the word prediction task for a speech
izer. This result experimentally shows an advantage
s over word tri-gram models.

5. CONCLUSION

ve described a sentence boundary detector based on
with ACTs and reported an experimental result on

f broadcast lectures in Japanese. The accuracy of
M-based detector was better than a detector based on
ri-gram model. This proved experimentally that an
mproves sentence boundary detection.
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